EvoHull Publications

Mechanisms shaping biodiversity, selection at individual loci, behavioural aspects of mate preference population divergence, and the genomic processes involved in adaptive radiations Google Scholar citations

EvoHull Pubmed feed

pubmed: (lunt dh[au]) or ((h...

NCBI: db=pubmed; Term=(lunt dh[AU]) OR ((hanfling b[AU]) OR (Hänfling B[AU])) OR (Lawson Handley[Author]) OR ((Gomez A[Author]) AND Hull[Affiliation]) OR ((Joyce DA[Author]) AND Hull[Affiliation])

Related Articles

A new molecular diagnostic tool for surveying and monitoring Triops cancriformis populations.

PeerJ. 2017;5:e3228

Authors: Sellers GS, Griffin LR, Hänfling B, Gómez A

Abstract
The tadpole shrimp, Triops cancriformis, is a freshwater crustacean listed as endangered in the UK and Europe living in ephemeral pools. Populations are threatened by habitat destruction due to land development for agriculture and increased urbanisation. Despite this, there is a lack of efficient methods for discovering and monitoring populations. Established macroinvertebrate monitoring methods, such as net sampling, are unsuitable given the organism's life history, that include long lived diapausing eggs, benthic habits and ephemerally active populations. Conventional hatching methods, such as sediment incubation, are both time consuming and potentially confounded by bet-hedging hatching strategies of diapausing eggs. Here we develop a new molecular diagnostic method to detect viable egg banks of T. cancriformis, and compare its performance to two conventional monitoring methods involving diapausing egg hatching. We apply this method to a collection of pond sediments from the Wildfowl & Wetlands Trust Caerlaverock National Nature Reserve, which holds one of the two remaining British populations of T. cancriformis. DNA barcoding of isolated eggs, using newly designed species-specific primers for a large region of mtDNA, was used to estimate egg viability. These estimates were compared to those obtained by the conventional methods of sediment and isolation hatching. Our method outperformed the conventional methods, revealing six ponds holding viable T. cancriformis diapausing egg banks in Caerlaverock. Additionally, designed species-specific primers for a short region of mtDNA identified degraded, inviable eggs and were used to ascertain the levels of recent mortality within an egg bank. Together with efficient sugar flotation techniques to extract eggs from sediment samples, our molecular method proved to be a faster and more powerful alternative for assessing the viability and condition of T. cancriformis diapausing egg banks.

PMID: 28507815 [PubMed - in process]