EvoHull Publications

[content_boxes layout=”icon-on-side” iconcolor=”” circlecolor=”” circlebordercolor=”” backgroundcolor=””]

[content_box title=”Dr Bernd Haenfling” icon=”user” image=”” image_width=”35″ image_height=”35″ link=”http://scholar.google.co.uk/citations?hl=en&user=rfJ3qhcAAAAJ” linktarget=”_blank” linktext=”Google Scholar citations” animation_type=”0″ animation_direction=”down” animation_speed=”0.1″]Conservation genetics and genomics of freshwater fishes, eDNA and metabarcoding and the dynamics of biological invasions in freshwaters [/content_box]

[content_box title=”Dr Africa Gomez” icon=”user” image=”” image_width=”35″ image_height=”35″ link=”http://scholar.google.co.uk/citations?user=oHzhVGwAAAAJ” linktarget=”_blank” linktext=”Google Scholar citations” animation_type=”0″ animation_direction=”down” animation_speed=”0.1″]Population genetics, phylogeography and the evolution of reproductive modes [/content_box]

[/content_boxes]

[content_boxes layout=”icon-on-side” iconcolor=”” circlecolor=”” circlebordercolor=”” backgroundcolor=””]

[content_box title=”Dr Domino Joyce” icon=”user” image=”” image_width=”35″ image_height=”35″ link=”http://scholar.google.co.uk/citations?user=BIGSVc4AAAAJ” linktarget=”_blank” linktext=”Google Scholar citations” animation_type=”0″ animation_direction=”down” animation_speed=”0.1″]Mechanisms shaping biodiversity, selection at individual loci, behavioural aspects of mate preference population divergence, and the genomic processes involved in adaptive radiations [/content_box]

[content_box title=”Dr Lori Lawson Handley” icon=”user” image=”” image_width=”35″ image_height=”35″ link=”http://scholar.google.co.uk/scholar?hl=en&q=lori+lawson+handley&btnG=&as_sdt=1%2C5&as_sdtp=” linktarget=”_blank” linktext=”Google Scholar citations” animation_type=”0″ animation_direction=”down” animation_speed=”0.1″]The evolutionary causes and consequences of dispersal, and the factors driving the evolution of sex chromosomes [/content_box]

[/content_boxes]

[content_boxes layout=”icon-on-side” iconcolor=”” circlecolor=”” circlebordercolor=”” backgroundcolor=””]

[content_box title=”Dr Dave Lunt” icon=”user” image=”” image_width=”35″ image_height=”35″ link=”http://scholar.google.co.uk/citations?user=rAZT3w0AAAAJ” linktarget=”_blank” linktext=”Google Scholar citations” animation_type=”0″ animation_direction=”down” animation_speed=”0.1″]Comparative genomics, large scale phylogenetics, molecular evolution, and population genetics. [/content_box]

[content_box title=”” icon=”user” image=”” image_width=”35″ image_height=”35″  animation_type=”0″ animation_direction=”down” animation_speed=”0.1″][/content_box]

[/content_boxes]

EvoHull Pubmed feed

pubmed: (lunt dh[au]) or ((h...

NCBI: db=pubmed; Term=(lunt dh[AU]) OR ((hanfling b[AU]) OR (Hänfling B[AU])) OR (Lawson Handley[Author]) OR ((Gomez A[Author]) AND Hull[Affiliation]) OR ((Joyce DA[Author]) AND Hull[Affiliation])

Comparative genomics of apomictic root-knot nematodes: hybridization, ploidy, and dynamic genome change.

Genome Biol Evol. 2017 Sep 25;:

Authors: Szitenberg A, Salazar-Jaramillo L, Blok VC, Laetsch DR, Joseph S, Williamson VM, Blaxter ML, Lunt DH

Abstract
The Root-Knot Nematodes (RKN; genus Meloidogyne) are important plant parasites causing substantial agricultural losses. The Meloidogyne incognita group (MIG) of species, most of which are obligatory apomicts (mitotic parthenogens), are extremely polyphagous and important problems for global agriculture. While understanding the genomic basis for their variable success on different crops could benefit future agriculture, analyses of their genomes are challenging due to complex evolutionary histories that may incorporate hybridization, ploidy changes, and chromosomal fragmentation. Here we sequence 19 genomes, representing five species of key RKN collected from different geographic origins. We show that a hybrid origin that predated speciation within the MIG has resulted in each species possessing two divergent genomic copies. Additionally, the apomictic MIG species are hypotriploids, with a proportion of one genome present in a second copy. The hypotriploid proportion varies among species. The evolutionary history of the MIG genomes is revealed to be very dynamic, with non-crossover recombination both homogenising the genomic copies, and acting as a mechanism for generating divergence between species. Interestingly, the automictic MIG species M. floridensis differs from the apomict species in that it has become homozygous throughout much of its genome.

PMID: 29036290 [PubMed - as supplied by publisher]