EvoHull Publications

[content_boxes layout=”icon-on-side” iconcolor=”” circlecolor=”” circlebordercolor=”” backgroundcolor=””]

[content_box title=”Dr Bernd Haenfling” icon=”user” image=”” image_width=”35″ image_height=”35″ link=”http://scholar.google.co.uk/citations?hl=en&user=rfJ3qhcAAAAJ” linktarget=”_blank” linktext=”Google Scholar citations” animation_type=”0″ animation_direction=”down” animation_speed=”0.1″]Conservation genetics and genomics of freshwater fishes, eDNA and metabarcoding and the dynamics of biological invasions in freshwaters [/content_box]

[content_box title=”Dr Africa Gomez” icon=”user” image=”” image_width=”35″ image_height=”35″ link=”http://scholar.google.co.uk/citations?user=oHzhVGwAAAAJ” linktarget=”_blank” linktext=”Google Scholar citations” animation_type=”0″ animation_direction=”down” animation_speed=”0.1″]Population genetics, phylogeography and the evolution of reproductive modes [/content_box]

[/content_boxes]

[content_boxes layout=”icon-on-side” iconcolor=”” circlecolor=”” circlebordercolor=”” backgroundcolor=””]

[content_box title=”Dr Domino Joyce” icon=”user” image=”” image_width=”35″ image_height=”35″ link=”http://scholar.google.co.uk/citations?user=BIGSVc4AAAAJ” linktarget=”_blank” linktext=”Google Scholar citations” animation_type=”0″ animation_direction=”down” animation_speed=”0.1″]Mechanisms shaping biodiversity, selection at individual loci, behavioural aspects of mate preference population divergence, and the genomic processes involved in adaptive radiations [/content_box]

[content_box title=”Dr Lori Lawson Handley” icon=”user” image=”” image_width=”35″ image_height=”35″ link=”http://scholar.google.co.uk/scholar?hl=en&q=lori+lawson+handley&btnG=&as_sdt=1%2C5&as_sdtp=” linktarget=”_blank” linktext=”Google Scholar citations” animation_type=”0″ animation_direction=”down” animation_speed=”0.1″]The evolutionary causes and consequences of dispersal, and the factors driving the evolution of sex chromosomes [/content_box]

[/content_boxes]

[content_boxes layout=”icon-on-side” iconcolor=”” circlecolor=”” circlebordercolor=”” backgroundcolor=””]

[content_box title=”Dr Dave Lunt” icon=”user” image=”” image_width=”35″ image_height=”35″ link=”http://scholar.google.co.uk/citations?user=rAZT3w0AAAAJ” linktarget=”_blank” linktext=”Google Scholar citations” animation_type=”0″ animation_direction=”down” animation_speed=”0.1″]Comparative genomics, large scale phylogenetics, molecular evolution, and population genetics. [/content_box]

[content_box title=”” icon=”user” image=”” image_width=”35″ image_height=”35″  animation_type=”0″ animation_direction=”down” animation_speed=”0.1″][/content_box]

[/content_boxes]

EvoHull Pubmed feed

pubmed: (lunt dh[au]) or ((h...

NCBI: db=pubmed; Term=(lunt dh[AU]) OR ((hanfling b[AU]) OR (Hänfling B[AU])) OR (Lawson Handley[Author]) OR ((Gomez A[Author]) AND Hull[Affiliation]) OR ((Joyce DA[Author]) AND Hull[Affiliation])

Related Articles

Needle in a haystack? A comparison of eDNA metabarcoding and targeted qPCR for detection of the great crested newt (Triturus cristatus).

Ecol Evol. 2018 Jun;8(12):6330-6341

Authors: Harper LR, Lawson Handley L, Hahn C, Boonham N, Rees HC, Gough KC, Lewis E, Adams IP, Brotherton P, Phillips S, Hänfling B

Abstract
Environmental DNA (eDNA) analysis is a rapid, cost-effective, non-invasive biodiversity monitoring tool which utilises DNA left behind in the environment by organisms for species detection. The method is used as a species-specific survey tool for rare or invasive species across a broad range of ecosystems. Recently, eDNA and "metabarcoding" have been combined to describe whole communities rather than focusing on single target species. However, whether metabarcoding is as sensitive as targeted approaches for rare species detection remains to be evaluated. The great crested newt Triturus cristatus is a flagship pond species of international conservation concern and the first UK species to be routinely monitored using eDNA. We evaluate whether eDNA metabarcoding has comparable sensitivity to targeted real-time quantitative PCR (qPCR) for T. cristatus detection. Extracted eDNA samples (N = 532) were screened for T. cristatus by qPCR and analysed for all vertebrate species using high-throughput sequencing technology. With qPCR and a detection threshold of 1 of 12 positive qPCR replicates, newts were detected in 50% of ponds. Detection decreased to 32% when the threshold was increased to 4 of 12 positive qPCR replicates. With metabarcoding, newts were detected in 34% of ponds without a detection threshold, and in 28% of ponds when a threshold (0.028%) was applied. Therefore, qPCR provided greater detection than metabarcoding but metabarcoding detection with no threshold was equivalent to qPCR with a stringent detection threshold. The proportion of T. cristatus sequences in each sample was positively associated with the number of positive qPCR replicates (qPCR score) suggesting eDNA metabarcoding may be indicative of eDNA concentration. eDNA metabarcoding holds enormous potential for holistic biodiversity assessment and routine freshwater monitoring. We advocate this community approach to freshwater monitoring to guide management and conservation, whereby entire communities can be initially surveyed to best inform use of funding and time for species-specific surveys.

PMID: 29988445 [PubMed]