EvoHull Publications

[content_boxes layout=”icon-on-side” iconcolor=”” circlecolor=”” circlebordercolor=”” backgroundcolor=””]

[content_box title=”Dr Bernd Haenfling” icon=”user” image=”” image_width=”35″ image_height=”35″ link=”http://scholar.google.co.uk/citations?hl=en&user=rfJ3qhcAAAAJ” linktarget=”_blank” linktext=”Google Scholar citations” animation_type=”0″ animation_direction=”down” animation_speed=”0.1″]Conservation genetics and genomics of freshwater fishes, eDNA and metabarcoding and the dynamics of biological invasions in freshwaters [/content_box]

[content_box title=”Dr Africa Gomez” icon=”user” image=”” image_width=”35″ image_height=”35″ link=”http://scholar.google.co.uk/citations?user=oHzhVGwAAAAJ” linktarget=”_blank” linktext=”Google Scholar citations” animation_type=”0″ animation_direction=”down” animation_speed=”0.1″]Population genetics, phylogeography and the evolution of reproductive modes [/content_box]

[/content_boxes]

[content_boxes layout=”icon-on-side” iconcolor=”” circlecolor=”” circlebordercolor=”” backgroundcolor=””]

[content_box title=”Dr Domino Joyce” icon=”user” image=”” image_width=”35″ image_height=”35″ link=”http://scholar.google.co.uk/citations?user=BIGSVc4AAAAJ” linktarget=”_blank” linktext=”Google Scholar citations” animation_type=”0″ animation_direction=”down” animation_speed=”0.1″]Mechanisms shaping biodiversity, selection at individual loci, behavioural aspects of mate preference population divergence, and the genomic processes involved in adaptive radiations [/content_box]

[content_box title=”Dr Lori Lawson Handley” icon=”user” image=”” image_width=”35″ image_height=”35″ link=”http://scholar.google.co.uk/scholar?hl=en&q=lori+lawson+handley&btnG=&as_sdt=1%2C5&as_sdtp=” linktarget=”_blank” linktext=”Google Scholar citations” animation_type=”0″ animation_direction=”down” animation_speed=”0.1″]The evolutionary causes and consequences of dispersal, and the factors driving the evolution of sex chromosomes [/content_box]

[/content_boxes]

[content_boxes layout=”icon-on-side” iconcolor=”” circlecolor=”” circlebordercolor=”” backgroundcolor=””]

[content_box title=”Dr Dave Lunt” icon=”user” image=”” image_width=”35″ image_height=”35″ link=”http://scholar.google.co.uk/citations?user=rAZT3w0AAAAJ” linktarget=”_blank” linktext=”Google Scholar citations” animation_type=”0″ animation_direction=”down” animation_speed=”0.1″]Comparative genomics, large scale phylogenetics, molecular evolution, and population genetics. [/content_box]

[content_box title=”” icon=”user” image=”” image_width=”35″ image_height=”35″  animation_type=”0″ animation_direction=”down” animation_speed=”0.1″][/content_box]

[/content_boxes]

EvoHull Pubmed feed

pubmed: (lunt dh[au]) or ((h...

NCBI: db=pubmed; Term=(lunt dh[AU]) OR ((hanfling b[AU]) OR (Hänfling B[AU])) OR (Lawson Handley[Author]) OR ((Gomez A[Author]) AND Hull[Affiliation]) OR ((Joyce DA[Author]) AND Hull[Affiliation])

Related Articles

Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius, L.

Mol Ecol. 2016 Jul;25(13):2997-3018

Authors: Jeffries DL, Copp GH, Lawson Handley L, Olsén KH, Sayer CD, Hänfling B

Abstract
The conservation of threatened species must be underpinned by phylogeographic knowledge. This need is epitomized by the freshwater fish Carassius carassius, which is in decline across much of its European range. Restriction site-associated DNA sequencing (RADseq) is increasingly used for such applications; however, RADseq is expensive, and limitations on sample number must be weighed against the benefit of large numbers of markers. This trade-off has previously been examined using simulation studies; however, empirical comparisons between these markers, especially in a phylogeographic context, are lacking. Here, we compare the results from microsatellites and RADseq for the phylogeography of C. carassius to test whether it is more advantageous to genotype fewer markers (microsatellites) in many samples, or many markers (SNPs) in fewer samples. These data sets, along with data from the mitochondrial cytochrome b gene, agree on broad phylogeographic patterns, showing the existence of two previously unidentified C. carassius lineages in Europe: one found throughout northern and central-eastern European drainages and a second almost exclusively confined to the Danubian catchment. These lineages have been isolated for approximately 2.15 m years and should be considered separate conservation units. RADseq recovered finer population structure and stronger patterns of IBD than microsatellites, despite including only 17.6% of samples (38% of populations and 52% of samples per population). RADseq was also used along with approximate Bayesian computation to show that the postglacial colonization routes of C. carassius differ from the general patterns of freshwater fish in Europe, likely as a result of their distinctive ecology.

PMID: 26971882 [PubMed - indexed for MEDLINE]